ALLYL-AND BENZYLSTANNANES, NEW REAGENTS

IN TERPENIC SYNTHESIS

M.ANDRIANOME, K.HABERLE, and B.DELMOND.

(Received in Japan **9** *September* **1988)**

Laboratoire de Chimie Organique et Organometallique (UA 35 CNRS) ,Institut du Pin, Universite de Bordeaux 1. 351, Coursde la Liberation 33405 TALENCE CEDEX (France).

Abstract:Terpenic allyl-and benzylstannanes are easily prepared from unsaturated terpene
hydrocarbons by metallation followed by quenching with trialkyltin chloride. An isomerization of
unsaturated terpenes via allyltin c into (+)-ß-pinene. A regioselective acylation of allyl-and benzylstannanes are realized by a rhodium catalyzed coupling with acyl halides. Mono-and sesquiterpenoid ketones which play an important role **m the fragrance industry can be obtained. Hydroxylation and oxidation of terpene hydrocarbons via allyl-and benzylstannanes are also reported.**

Allylstannanes are versatile reagents that show high reactivity toward electrophilic species? and useful precursors for the introduction of a variety of functional groups²⁻⁶. We report here the use of **these organometallic intermediates in the preparation of variously functionalized terpenes providing an access to new compounds of a great potential interest in the area of the fragrance chemistry.**

SYNTHESIS OF TERPENIC ALLVL-AND BENZVLSTANNANES

To date, only a few terpenic allystannanes have been obtained, either from allylic halides⁷⁻¹¹ or **acetatesl2.13, or from unsaturated hydrocarbonsl4-le.**

In order to introduce the trialkylstannyl group into the allylic position on the terpenic substrates, the availability of starting material were taken into account. As it was difficult to obtain allylic functionnal terpenes in high purity, allyl lithium reagents were first generated from the parent **terpenel7 and converted to allylstannanesl.**

The ally1 lithium reagents were prepared by metallation of unsaturated terpenic hydrocarbons with n-butyllithium -tetramethylethylenediamine^{18,19}. Then the allyl carbanions were quenched with **trimethyltin chloride as outlined in Scheme 1.**

From terpenic hydrocarbons limonene 1, p-menthene 2, α -pinene 3, 2-carene 4 and α -cedrene 5, readily available natural compounds, we obtained the corresponding allylstannanes 6-10 (Table 1).

Table 1

Ail the compounds were characterized by NMR {t H, 1% and 1 **%n). The introduction of the organometailjc group appears to go with a very high degree of regiosefectivity since allylstannanes** with the tin substituent at the less substituted end of the allyl unit were obtained exclusively. We have **extended this general procedure to the synthesis of benzylstannane 12 from p-cymene 11.**

PROTONOLYSIS OF TERPENIC AtLYtSTANNANES : **ISOMERlZATlON OF UNSATURATED TERPENIC HYDROCARBONS.**

Organotin compounds containing an ally1 group attached to the metal atom are particularly susceptible to acidic cleavage²⁰⁻²³. This reaction which occurs with complete allylic rearrangement, has **been applied to the terpenic series.**

Treatment of allyistannanes derivatives **Z-10** with hydrogen chloride at room temperature, in methanol containing 4% water gave terpenic hydrocarbons 13-16 (Table 2). Terminal olefins are **obtained with good yields and a high degree of purity without contamination with internal ones.**

lsomerization of unsaturated terpenic hydrocarbons

The easy protonolysis of terpenic allyltins, when combined with the preparation of these derivatives from terpenic hydrocarbons provides a synthetic method of isomerization of terpenic hydrocarbons and the formation of energetically less stable terminal olefins. The overall reaction should be formulated as Scheme 2 and the results are summarized in Table 2.

Reagents : 1) HCI / MeOH-4% H₂O

In particular, we propose a new short synthesis of $(+)$ - β -pinene²⁴. β -pinene together with its α **isomer is the minor constituent of numerous essential oils, and is the starting material for the** manufacture of perfumes, chemicals and polyterpene resins. Also, the conversion of α -pinene into the less easily available β -pinene has been investigated²⁵, but most of reported methods using various **catalysts led to ineffective conversion with poor yields.**

More recently, two new synthesis of *β*-pinene fromα-isomer have been reported. Julia²⁶ described a four-step method which involves a reductive fission of alkenephosphonates leading to β -pinene with an overall yield of 25%. The conversion proposed by Cao²⁷ gave a mixture from which β -pinene could **only be obtained by careful distillation. Also, our new method converts (+)-α-pinene into (+)-β-pinene** with an overall yield of 50% in two steps.

We have obtained (+)-β-pinene with high isomeric and optical purity . This uncommon dextrorotatory form of β -pinene has so far been detected^{28,29} in very few plants.

ACY LATION OF TERPENE HYDROCARBONS VIA ALLY L- AND BENZYLSTANNANES

Allyltin compounds undergo a transition metal catalyzed coupling reaction with acid chlorides leading to β , γ -unsaturated ketones. Here, we have extended the work of Migita³⁰ and Stille³¹ to the acylation of allyl-and benzylstannanes 7-9 and 13 with acid chlorides in the presence of chlorotris-**(triphenylphosphine)rhodium. The overall transformation from unsaturated terpene hydrocarbons provides a new general method for the acylation of these compounds as illustrated in Scheme 3.**

Thus, we have explored the use of allylstannanes in the synthesis of terpene derivatives44 not readily obtained by traditional methods (Table 3).

The reaction of acetyl chloride with 10-(trimethylstannyl)-a-pinene 8 gave 10-acetyl-a-pinene 17 in 74% yield while reactions of α -pinene directly with acetic anhydride³² or β -pinene with acetyl **hexachloroantimonate33 produce 12 in poor yield, often accompanied by rearrangement products.**

Table 3

Acylation with acetyl chloride of 10-(trimethylstannyl)limonene 7 gave the exclusive formation of **lo-acetyllimonene 18 in 62% yield. The organostannyl group controlsthe acylation on C-10 carbon** whereas direct acylation of limonene with acetyl chloride catalyzed by tin tetrachloride³⁵ occurs at both C-6 and C-10 to give, after dehydrochloration, a complex mixture of α , β and β , γ -unsaturated ketones.

The reaction of 10-(trimethylstannyl)-2-carene 9 with senecioyl chloride resulted in total allylic rearrangement with the formation of 2-senecioyl-3(10)-carene 19 in 54% yield. To our knowledge this **compound has never been described in the literature.**

Synthesis of atlantones.

Acylation of allylstannanes with senecioyl chloride offers the potential of introducing an additional isoprene unit and the formation of sesquiterpene ketones. We illustrate this methodology by the synthesis of the atlantones 20 and 21 from limonene.

The rhodium-catalyzed acylation of IO-(trimethylstannyl)limonene Zwith senecioyl chloride proceeded as described earlier to afford a 62% yield of a 75:25 mixture of β -atlantone 20 and α -atlan**tone 21**.

Again, this reaction proceeded with good regioselectivity whereasdirect reaction of limonene with senecioyl chloride under classical reaction conditionsaffordsa complex mixture of unsaturated ketones3E.

Acylation of p-cymene.

The selective transfer of a benzyl group from benzylstannanes has been previously reported by Stille37. Consequently we have extended our study to benzyltin derivatives in the terpene series. Thus, 7-(trimethylstannyl)-p-cymene 12 when allowed to react with acetyl and senecioyl chlorides in the presence of chlorotris(triphenylphosphine)rhodium gave 7-acetyl-p-cymene 22 (72%) and 7-senecioyl**p-cymene 23 (53%) respectively.**

To our knowledge these two compounds have not been previously reported. In comparison, the acylation of p-cymene with acid chlorides in the presence of AlCl3 occurs on the aromatic nucleus to give alkylphenones3B.

The rhodium-catalyzed coupling of acid chlorides with terpene allyl-and benzylstannanes provides a convenient regioselective method for the synthesis of terpenic ketones which are very useful compounds for the aroma industry.

HYDROXVLATION AND OXIDATION OF TERPENE HYDROCARBONS VIA ALLYL-AND BENZYLSTANNANES

Recently Ueno³⁹ reported that the reaction of m-chloroperbenzoic acid with allylstannanes led after acid treatment to allylic alcohols. This oxidation have also been used to realize (1,3)-hydroxyl **group shifts in allylic alcohols. In order to extend this reaction to terpene series, we have used a solution of p-nitroperbenzoic acid in chloroform as oxidant. Without acid hydrolysis at the end of reaction,** allylstannanes 7-9 and benzylstannane 12 were directly transformed into terpenic alcohols 24-27 **respectively, in moderate yields (Table 4).**

1084 M. ANDRIANOME et*al.*

Table 4

Some of them are not easily available with a good purity. This procedure represents a general method that we propose forthe transformation of terpene hydrocarbonsto the corresponding allylic alcohols via allylstannanes and benzylstannanes.

This methodology can be extended to the introduction of other organic functionality on terpene substrates., In particular this would provide access to terpenic carbonyl compounds - via ally1 and benzylstannanes - from terpene hydrocarbons.

The oxidation of allyltin derivatives with various oxidant has been reported by Still40. Also, when allyl-and benzylstannanes 28, 29 and 30 are treated with pyridinium chlorochromate in an acetone solution, a mixture of terpenic α , β -unsaturated carbonyl compounds was generally obtained in **moderated yields. The results of oxidation are summarized in Table 5 .The poor result may be attribuable in part to the partial hydrolysis of allylorganometallic derivatives under reaction conditions.**

Conclusion

We have shown from these various exemples that terpenic allyl-and benzylstannanes - **readily obtained from terpenes hydrocarbons, natural compounds easily available -are versatile intermediates for the synthesis of terpenic derivatives, useful in the perfume industry.**

EXPERIMENTAL SECTION

IR spectra were obtained with a UNICAM SP 200 spectrophotometer. 1H NMR spectra were recorded at 90 MHz on a BRUKER WH 90 spectrometer using CDCl3 assolvent and tetramethylsilane as an internal standart (**ppm). 13C NMR spectra were recorded at 22.63 MHz on a BRUKER WH 90 spectrometer using** CDCI₃ as solvent. Chemical shifts are reported as δ values in parts per million from internal tetramethy
silane. ¹¹⁹Sn NMR spectra are obtained with a BRUKER WH 90 spectrometer operating at 33.54 MHz with CDCl₃ as solvent and (CH₃)₄Sn as external reference. Mass spectra were measured on a Micromass 16F instrument. Elemental microanalyses were performed by Service Central de Microanalyses du CNRS,
Vernaison, France. Column chromatography was performed with MERCK silicagel 60, 70-230 mesh ¹imonene, 2-carene, p-menthene, p-cymene and chlorotris(triphenylphosphine)rhodium were obtained
from FLUKA. n-butyllithium in hexane was from ALDRICH CHEMICAL CO. Trimethylstannyl chloride was a generous gift of SCHERING-FRANCE. All reactions were carried out in an atmosphere of dry nitrogen.

PREPARATION OF TERPENE ALLVL-AND BENZVLSTANNANES.

General procedure

To a stirred solution of 1,SM n-butyllithium in hexane (22 mmol) wasadded dropwise dry N,N,N'.N'- Tetramethylethylenediamine (22 mmol). The temperature of the solution rose to ca.4S"C. The yellow resulting solution wasstirred with a magneticstirrer until a temperature of 2S"C was regained, whereupon unsaturated terpene (44 mmol) was added. According to the substrate, the solution was stirred in the specific conditions described in Table 1. The solution cooled to 0°C was uenched with a solution of trimethylstannyl chloride (30 mmol) in hexane (10 mL). After 4h the insoluble salts were removed by **1: filtration. The rltrate solvent was poured into a saturated aqueous ammonium chloride solution and** extraction with ether. The organic layers were washed with H₂O, dried (MgSO₄) and evaporated under
reduced pressure. Products are isolated by distillation.

Using the general procedure described above we have obtained these reagents <u>6-10</u> and <u>12</u> from <u>1-5</u> **and 11:**

lo-(Trimethylstannyl)limonene 6,72"C (0.4mm); MS, m/z (relative intensity) 300 (M +, 5). 165 (100); 1H NMR (CDCl3) δ 0.00 (9H, s), 1.61 (3H, br s), 4.55 and 4.62 (2H, m), 5.40 (1H, m); 13C NMR (CDCl3) δ
153.8 (C-8), 133.2 (C-1), 120.7 (C-2), 102.9 (C-9), 41.1 (C-4), 31.2 (C-6), 30.8 (C-3), 28.3 (C-5), 23.2 (C-7), 20.3
(

7-(Trimethylstannyl)p-menthene 7,81"C (0.4mm); MS, m/z (relative intensity) 302 (M + ,9), **165 (100);** 1H NMR (CDCl3) & 0.04 (9H, s), 0.85 (6H, d), 5.20 (1H, m),; 13C NMR (CDCl3) & 136.6 (C-1), 116.5 (C-2), 40.0
(C-4), 32.1 (C-8), 31.3 (C-6), 28.9 (C-3), 26.5 (C-5), 21.6 (C-7), 19.8 (C-10), 19.6 (C-9), -9.8 (<u>C</u>H3Sn). **AnalCalcd fOrC13H26Sn: C, 51.82; H, 8.64; Sn, 39.53. Found: C, 51.54; H, 8.71; Sn, 39.66.**

1**0-(Trimethylstannyl)-x-pinene <u>8</u> ,6**0°C (0.6mm); MS, m/z (relative intensity) 300 (M + , 4), 165 (100);
1H NMR (CDCl3)δ 0.13 (9H, s), 0.91 (3H, s), 1.33 (3H, s), 5.06 (1H, m); 13C NMR (CDCl3)δ 147.5 (C-2), 110.8
(C-3), **119% NMR (CDCl3)S-4.40. Anal. Calcd forCr3H24Sn: C. 52.17; H.8.03; Sn, 39.80. Found: C, 52.10; H. 8.08; Sn, 40.07.**

1**0-(Trimethylstannyl)-2-carene <u>9</u> ,67°C (**0.2mm); MS, m/z (relative intensity) 300 (M + , 7), 165 (100);
1H NMR (CDCl₃) δ 0.06 (9H, s), 0.85 (3H, s), 1.05 (3H, s), 5.35 (1H, m); 13C NMR (CDCl₃) δ 137.5 (C-3), 114.8
 NMR (CDCl3) S -1.60. Anal. Calcd for CtsH245n: C, 52.17; H, 8.03; Sn, 39.80. Found: C, 52.09; H, 8;05; sn, 39.41.

1**5-(Trimethylstannyl)-** α **cedrene <u>10</u> ,**105°C (0.03mm); MS, m/z (relative intensity) 368 (M + , 3), 165 (100);
1H NMR (CDCl3) ∂ 0.04 (9H, s), 0.91 (3H, d), 1.02 (3H, s), 1.13 (3H,s), 5.10 (1H,m). Anal. Calcd for
C₁₈H3

7-(TrimethylstannyQp-cymene 12.73"C (0.2mm); MS, m/z (relative intensity) 298 (M + ,8). **165 (TOO);** 1 **H NMR (CDCI,) S 0.03 (9H. s). 1x0 (6H.d). 2.30 (2H. s). 2.80 (1 H. m). 7.00 (4H. m): 13C NMR (CDCll) fi** 144.3 (C-4), 139.8 (C-1), 126.6 (C-6,C-2), 126.2 (C-3,C-5), 33.4 (C-8), 24.0 (C-9,C-10), 19.4 (C-7), -10.2
(CH3Sn). ¹¹⁹Sn NMR (CDCl₃) δ + 2.80. Anal. Calcd for C₁₃H₂₂Sn: C, 52.52; H, 7.41; Sn, 40.07. Found: C,
5

PROTONOLYSE OF TERPENE ALLYLSTANNANES

General procedure

To a stirred solution of allylstannanes was added at room temperature an appropriate amount of hydrogen chloride in methanol containing 4% water. After stirring for 30 min. a saturated solution of sodium bicarbonate was added. The reaction mixture was extracted with ether, washed with water, dried over MgS04 and filtered. The solvent was eliminated and the product was isolated by distillatron. Product purity and identity were checked by gas chromatography and their structures were firmly established by spectral data.

From allyIstannanes <u>7</u> and **9-10**, using the general procedure described above, we have respectively *<u>A</u>* **obtained after distillation** :

l(7)-p-menthene %,68"C (25 mm); 1 **H NMR (CDCI3) S 0.84 (6H. d), 4.51 (ZH, br s)**

3(10)-carene lS,62"C (25 mm); 1 **H NMR (CDCl3)** S **0.93 (3H. s),O.97 (3H, s), 4.00 (ZH, m); 13C NMR (CDCI3) 149.1 (C-3), 107.0 (C-lo), 32.2 (C-2), 28.9 (C-4), 28.7 (C-9), 21.4 (C-l,C-5) 19.6 (C-6), 17.7 (C-7). 14.7 (C-8)**

P-cedrene l6.89"C (0.2mm); 1H NMR (CDCl3)60.91 (3H. d), 1.00 (3H, s), 1.10 (3H. s), 4.62 (ZH, m).

Obtention of $(+)$ - β -pinene 14.

The reaction of 2.61g (8.7 mmol) of 10-(Trimethylstannyl) α pinene 8 prepared from $(+)$ - α -pinene, **with HCI (8.7 mmol) in methanol (164 mL) containin %** with HCl (8.7 mmol) in methanol (164 mL) containing 4% H₂O gave 1g (85%) of (+)-β-p**inene <u>14</u>,** 63°(
(25 mm),[α]_D + 14.90°(c 2.8, CHCl3); ¹H NMR (CDCl3) δ 0.69 (3H, s), 1.24 (3H, s), 4.61 (2H, m).

ACYLATION OF TERPENE ALLYL-AND BENZYLSTANNANES.

Acylation of lo-(Trimethylstannyl)limonene 1

with acetyl chloride.

A solution of 2.73 g (9.1 mmol) of 10-(Trimethyl stannyl)limonene <u>7</u> and 1.07 g (13.7 mmol) of acetyl –
chloride in 5 mL of dichloromethane was allowed to react in the presence of 0.127 g (0.137 mmol) of **chlorotris(triphenylphosphine)rhodium in a sealed tube at 60°C. After 16h. the reaction mixture was** hydrolysed with a saturated aqueous NH₄Cl solution and extracted with ether. The organic layers were washed with H₂O and dried. The solvents were removed by evaporation under reduced pressure. The
crude product was purified by liquid chromatography on silica gel. Elution with 7:3 petroleum ether -
benzene as eluent, gav **sity) 178(M+, 2).43 (100); 1H NMR (CDC13) 8 1.64(3H, brs),2.10(3H.s), 3.16(2H,s),4.88and 5.00 (2H. m), 5.37 (IH, m).**

with senecioyl chloride.

A solution of 2 g(6.7 mmol) of 10-(Trimethyl-stannyl)limonene 7 and 1.19 g (10 mmol) of senecioyl chloride in 4 mL of dichloromethane are heated (60^oC) for 16h in a sealed tube in the presence of 0.062 **g (0.067 mmol) of rhodium complex. The reaction mixture wasworked up as in the experiment above. The crude product obtained after removing the solvent was purified b liquid chromatography on silica** gel. Elution with 6:4 petroleum ether- benzene gave 680 mg (47%) ofß-atlantone⁴¹⁻⁴³ 20: IR 1685 cm^{. 1};
MS, m/z (relative intensity) 218 (M + , 3), 83 (100); 1H NMR (CDCl₃) ∂ 1.62 (3H, br s), 1.81 (3H, br s), 2.10 (3H, br s), 3.10 (2H, br s), 4.80 and 4.90 (2H, m), 5.30 (1H, m), 6.00 (1H, m). Elution with 4:6 petroleum
ether-benzene gave 220 mg (15%) ofα-<mark>atlantone⁴¹⁻⁴³ 21</mark> :lR, 1685 cm^{.1}; MS, m/z (relative intensity)
218 (M + **(2H. m).**

Acylation of 10-(Trimethylstannyl) α -pinene 8 with acetyl chloride.

A solution of 2 (6.7 mmol) of lo-(Trimethylstannyl)apinene gand 0.79 g (IO mmol) of *Xt?tyl* **chloride in 4mL o 9 drchloromethane was heated (60°C) for 48h in a sealed tube in the Presence of 0.062** g **(0.067 mmol) of chlorotris(triphenylphosphine)rhodium. After 16h. the reaction mixture was hydroly**sed and extracted as previously described to give a crude product which was purified by liquid chroma-
tography. Elution with 1:1 petroleum ether- benzene gave 880 mg (74%) of 10-**acetyl-α-pinen**e33 <u>17:</u>
1R, 1715 cm-1; M

Acylation of lo-(Trimethylstannyl)-2-carene 9 with senecioyl chloride.

A solution of 1.5 g (5 mmol) of 10-(Trimethylstannyl)-2-carene <u>9</u> and 0.89 g (7.5 mmol) of senecioyl
chloride in 3mL of dichloromethane was allowed to react in the presence of 0.047 g (0.05 mmol) of
rhodium complex in a s mixture which was purified by liquid chromatography. Elution with 2:3 petroleum ether-benzene as an
eluent gave 560 mg (51%) of 2-α-senecioyl-3(10)-carene 19: IR, 1685 cm-1; MS, m/z (relative intensity)
218 (M + , 3), 83 (

Acylation of 7-(Trimethylstannyl)-p-cymene 12.

The reactions were conducted in the same fashion as with the allyIstannanes. A solution of 0.0106 mol of acid chloride (acetyl or senecioyl chloride) and 0.0067 mol of 7-(Trimethylstannyl)-p-cymene 12 in 5 **mL of dichloromethane in the presence of 0.067 mmol of chlorotris(triphenylphosphine)rhodium IS heated (60°C) in a sealed tube for48h.**

Using the general procedure described above we have respectively obtained:

7-**acetyl-p-cymene 22** : MS, m/z (relative intensity) 176 (M + , 21), 133 (100); 1H NMR (CDCl3) δ 1.18 (6|
d), 2.05 (3H, s), 3.55 (2H, s), 7.05 (4H, s). Anal. Calcd for C₁₂H₁₆O: C, 81.82; H, 9.09. Found: C, 82.03; **H. 9.11.**

7-**senecioyl-p-cymene 23** : MS, m/z (relative intensity) 216 (M + , 3), 83 (100); 1H NMR (CDCl3) δ 1.24 (6H,
d), 1.40 (3H, br s), 2.15 (3H, br s), 2.82 (1H, m), 3.66 (2H, s), 6.08 (1H, m), 7.13 (4H, s). Anal. Calcd for
C

HYDROXYLATION OF TERPENEALLYL-AND BENZYLSTANNANES.

General procedure

To a solution of allyl-and benzylstannanes (1.6 mmol) in chloroform was slowly added p-nitrobenzoic acid (1.8 mmol). The mixture was kept at room temperature for 15 min. After filtration, the solution was concentrated under reduced pressure and the products are isolated by distillation. By use of the above procedure, we have respectively obtained from **7, 8, 9 and 12**:

p-mentha-1,8(10)-dien-9-01 24 18 : **75°C (0.2 mm); 1H NMR (CDCl3) 6 1.65 (3H, brs), 4.08 (2H. s), 4.86** and 5.02 (2H, br s), 5.38 (1H, m).

trans-pinocarveol 25, 34 : 64°C (0.4 mm); 1H NMR (CDCl₃) δ 0.64 (3H, s), 1.28 (3H, s), 4.40 (1H, m), 4.79 and 4.99 (2H. m).

3(1 **O)-carene-2-01 26,45** : **70°C (0.3 mm);** 1 **H NMR (CDCl3) 6 0.90 (3H. s), 0.98 (3H, s), 4.01 (1 H, br s), 4.66 (2H, m).**

p-cymene-7-01 27,46 : **75°C (0.2 mm); 1H NMR (CDCI3) 6 1.24 (6H, d), 2.88 (1 H, m), 4.62 (ZH, br s), 7.24 (4H, m).**

These spectral properties are identical with those previously reported.

OXIDATION OF TERPENE ALLYL-AND BENZYLSTANNANES

General procedure.

Tributylstannyl derivatives 28-30 obtained using the same methodology by trapping allylithium intermediates with tributyltin chloride, were used without isolation.

To a solution of pyridinium chlorochromate (30 mmol) in acetone (40mL) was added terpene allyl-or benzylstannane (10 mmol). After stirring for 1h, 200 mL of ether was added and the reaction mixture
was filtered through silica gel column. The solvent was evaporated off, and the residue was purified by **liquid chromatography on silica gel.**

The oxidation of 10-(Tributylstannyl)-a-pinene 28 according to the general procedure gave myrtenal **31 ⁴⁷ MS, m/z (relative intensity) 150 (M + , 2), 79 (100); 1H NMR (CDCl3) δ 0.77 (3H, s), 1.36 (3H, s), 6.68
(TH, m), 9.40 (1H, s) and pinocarvone <u>32</u> ⁴⁸ MS, m/z (relative intensity) 150 (M + , 18), 81 (100);** (1H, m), 9.40 (1H, s) and **pinocarvone <u>32</u> ⁴⁸ MS, m**/z (relative intensity) 150 (M + , 18), 81 (100); 1H NMR
(CDCl₃) δ 0.84 (3H, s), 1.38 (3H, s), 4.93 and 5.88 (2H, m)*.*

The oxidation of 10-(TributyIstannyl)-2-carene <mark>29</mark> by use of the previous procedure gave 2-c**arene-10-a**
33⁴⁹ MS, m/z (relative intensity) 150 (M + , 28), 79 (100); 1H NMR (CDCl3) ∂ 0.75 (3H, s), 1.10 (3H, s), 6.95
(TH,

The oxidation of 7-(Tributylstannyl)-p-cymene 30 according the same procedure gave p-cymene-7-al **3550 1H NMR (CDCl3) - 1.10(6H,d),2.78(1H, m),7.44(4H, m),9.86(1H. s)**

Acknowledgment. We thank M. Petraud and 8. Barbe for recording the NMR spectra, G. Bourgeois for recording the mass spectra, and Schering- France for generous gift of chemicals.

REFERENCES.

-
-
- 1. MANGRAVITE, J.A. J. Organometal. Chem. Libr. 1979, 7, 45 and references therein.
2. NEGISHI, E.I. Organometallics in Organic Synthesis, Wiley: New York, 1980; Vol.1, pp 394-454.
3. KUMAR DAS, V.G. and CHU C.K. The Chemi
-
-
-
- 6. YAMAMOTO, Y. Aldrichimica Acta, 1987, <u>20</u>(2), 45.
7. MARUYAMA, K. and NARUTA, Y. J. Org. Chem., 1978, <u>43</u>, 3796.
- 8. KASHIN, A.N.; BAKURRIN, V.N.; GRISHIN, Y.; BELETSKAYA, I.P. and REUTOV.0.A. Izv. Akad. Nauk
- SSSR. Ser. Khim., 1980, 1950.
9. KASHIN, A.N.; BAKURRIN, V.N.; BELETSKAYA, I.P. and REUTOV, O.A. Zh. Org. Khim.1982, <u>28</u>(11),223.
- 10. YOUNG, D.; JONES, M. and KITCHING, W. Austr. J. Chem., 1986, 39, 563.
-
- 11. YOUNG, D. and KITCHING, W. J. Org. Chem., 1985, <u>50</u>, 4098.
12. TROST, B.M. and HERNDON, J.W. J. Am. Chem. Soc., 1984, <u>106</u>, 683
- 13. TABUCHI, T.; INANGA, J. and YAMAGUCHI, M. Tetrahedron Lett., 1987, 28, 215.
-
- 14. IYODA, J. and SHIIHARA, I. J. Org. Chem., 1970, <u>35</u>, 4267.
15. UKITA, M.; IYODA, J. and SHIIHARA, I. J. Org. Chem., 1980, <u>45</u>, 328.
-
- 16. UENO, Y.; SANO, H. and OKAWARA, M. Tetrahedron Lett., 1980, <u>21,</u> 1767.
17. SEYFERTH, D.; MURPHY, G.J. and WOODRUFF, R.A. J. Organometal. Chem., 1977, <u>147,</u>
18. CRAWFORD, R.J.; ERMAN, W.F. and BROADUS, C.D. J. Am. Che
-
- 19. WILSON, S.R.; PHILLIPS, L.R. and NATALIE, K.J. J. Am. Chem. Soc., 1979, 101, 3340.
-
- 20. KUIVILA, H.G. and VERDONE, J.A. Tetrahedron Lett., 1964, 119.
21. VERDONE, J.A.; MANGRAVITE, J.A.; SCARPA, N.M. and KUIVILA, H.G. J. Am. Chem. Soc.,1975,<u>97,</u>84:
22. YOUNG, D.; KITCHING, W. and WICKAM, G. Tetrahedron L
-
- 23. JONES, M. and KITCHING, W. J. Organometal. Chem., 1983, 247, C5.
- 24. ANDRIANOME, M. and DELMOND, B. J. Chem. Soc., Chem. Commun., 1985, 1203.
- 25. VERGHESE, J. Perfumer Flavorist, 1981, 6, 23 and references therein.
- 26. HARWOOD, L.M. and JULIA, M. Synthesis, 1982, 456.
-
-
-
- 27. MIN, Y.F.; ZHANG, B.W. and CAO, Y. Synthesis, 1982, 875.
28. RUTOVSKI, B.N. and VINOGRADA, I.V. J. Prakt. Chem. 1928, <u>120</u>, 44.
29. NELSON, E.K. J. Am. Chem. Soc., 1933, <u>55</u>, 3400.
30. KOSUGI, M.; SHIMIZU, Y. and MIG
-
- 31. LABADIE, J.W.; TUEMING, D. and STILLE, J.K. J. Org. Chem.,1983, <mark>48</mark>, 4634.
32. SRIVASTAVA, S.K.; AKHILA, A. and NIGAM, M.C. Indian J. Chem., 1984, <u>238,</u> 89
33. HOFFMANN, H.M.R. and TSUSHIMA, T. J. Am. Chem. Soc., 197
-
-
- 35. ADAMS, D.R.; BHATNAGAR, S.R., and COOKSON, R.C. J. Chem. Soc., Perkin Trans. 1,1975, 1502.
36. ADAMS, D.R.; BHATNAGAR, S.R.; COOKSON, R.C. and TUDDENHAM, R.M. J. Chem. Soc., Perkin Trans. 1, 1975, 1741.
- 37. MILSTEIN, D. and STILLE, J.K. J. Am. Chem. Soc., 1978, 100, 3636.
-
- 38. STRUBELL, W. and BAUMGAERTEL H. J. Prakt. Chem., 1962, <u>17,</u> 3
39. UENO, Y. ; SANO, H. and OKAWARA, M. Synthesis, 1980, 1011.
- 40. STILL, W.C. J. Am. Chem. Soc., 1977, 99, 4186.
-
-
-
- 41. PFAU, A.C. Helv. Chim. Acta, 1932, <mark>15</mark>, 1481.
42. PFAU, A.C. and PLATTNER, P. Helv. Chim. Acta, 1934, <u>17,</u> 129.
43. PANDE, B.S.; KRISHNAPPA, S.; BISARYA, S.C. and DEV, S. Tetrahedron, 1971, 27, 841.
- 44. ANDRIANOME, M. and DELMOND, B. J. Org. Chem., 1988, 53, 542.
-
- 45. GOLLNICK, K. and SCHADE, G.,Tetrahedron Letters 1966, 2335.
46. PALFRAY,J,C. SABETAY, S.and MASTAGLI,P.,Compt. rend. 1936, <u>203,</u> 1523
47. CHRETIEN-BESSIERE, Y., Bull. Soc. Chim. France, 1961, 2182.
-
-
- 48. HARTSHORN, M.P. and WALLIS, A.F.A., J. Chem. Soc., 1964, 5254.
49. SADDLER, J.C.and FUCHS, P.L., J. Am. Chem. Soc.,1981, <u>103,</u> 2112.
- 50. BERT, L., Compt. rend., 1942, 215, 276.